
Foliage Discrimination using a Rotating Ladar

Andres Castano and Larry Matthies

Jet Propulsion Laboratory
4800 Oak Grove Dr.
Pasadena, CA 91109

{ andres/lhm) @telerobotics.jpl.nasa.gov

Abstract

An outdoor environment presents t o a robot objects
that are drivable, like tall grass and small bushes, or
non-drivable, like trees and rocks. Baditionally, be-
cause of the dificulty of discriminating between these
classes, a robot searches for paths free of objects of
either class. Although this approach prevents colli-
sions with objects missclassified as drivable, it also
eliminates a large number of non-free drivable paths
and by doing so, it might eliminate the only path to a
desired destination. In this paper we present of a real
time algorithm that detects foliage using range esti-
mates from a rotating laser. Objects not classified
as foliage are conservatively labeled as non-drivable
obstacles. In contrast to related work that uses range
statistics to classih the objects, we exploit the ex-
pected localities of an obstacle, in both space and
time. The Urbie robot is presently using this algo-
rithm to discriminate drivable grass from obstacles
during outdoors autonomous navigation tasks.

1 Introduction

A major problem for autonomous cross-country nav-
igation of robots is the discrimination between driv-
able and non-drivable objects in the path. Until a
few years ago, outdoors robotics was mostly avoided,
in part because many core research problems (e.g.,
path planning, mapping, etc.) could be studied in-
doors, decoupling them from the uncertainty associ-
ated with unstructured environments. The main ex-
ception was outdoors navigation of man-made roads,
as in the case of the Navlab vehicle and its successors
[l]. As the state of all-terrain sensors improves, the
development of cross-country navigation platforms,
like military surveillance robots and search and res-
cue vehicles, is becoming cost-effective.
The laser radar (ladar) is one of the sensors that is
becoming cost-effective in cross-country navigation.
The ladar is an active sensor that fires a laser beam
and then senses its reflection, or return, from the

scene. From this return, the sensor estimates the dis-
tance, or range, to the object of the scene hit by the
beam. The use of a rotating mirror allows the sensor
to sweep the scene about an axis, obtaining a 1-D
range signal (e.g., [2]); placing a 1-D laser on a tilt
unit allows the sensor to sweep an area of the scene,
producing a range image (e.g., [3], [4])). Ladars are
useful because they provide a range estimate in many
situations where it cannot be estimated with a stereo
pair or by other means, e-g., night operation, low-
frequency high-contrast scenes with shadows, etc.
In this paper we describe a real time algorithm that
uses the range estimates of a rotating ladar to detect
foliage in an outdoors scenario. This classification
allows the inclusion of tall grass to any free path
that the robot may select while still allowing it to
avoid partially hidden obstacles. Recent approaches
to use a ladar to find obstacles partially hidden by
grass rely on the statistics of the signal (e.g., [5]) . In
contrast to these approaches, we exploit the spatial
and temporal localities of the objects in the scene to
classify the returns. The result is a robust algorithm
with a low false alarm rate.
This paper is organized as follows. In Secs. 2 and 3
we describe the ladar and provide an overview of the
algorithm. In Secs. 4 and 5 we show how to select
non-foliage returns and how to prune them, respec-
tively. In Sec. 6 we describe how we keep track of the
state of the scene. In Sec. 7 we describe experimental
results using Urbie, an all-terrain autonomous robot.
Finally, in Sec. 8 we present our conclusions.

2 The Ladar System

Consider a mobile robot moving in a field of grass,
as shown in Fig. 1. This figure shows a top view of a
cross-section of the scene, where blades of grass and
tree trunks are represented by small and large white
circles, respectively. Tree trunks A and B represent
the cases where an obstacle is partially hidden by
grass and in the clear, respectively. The robot scans
the scene parallel to the ground, once every r sec-

mailto:telerobotics.jpl.nasa.gov

Figure 1: Robot using a ladar to scan a scene

onds. Each scan spans an angle of R radians and
provides range estimates to objects located farther
than dmjn and closer than dmaz. Thus, a sampling
interval (i.e., the angle between successive fires of the
laser) of 8 radians yields at most

N, = ale

range estimates per scan. Some estimates might be
missing, e.g., there might not be an object in the
path of the laser within the valid distances or the
target might absorb the light at the wavelength of
the laser. In Fig. 1, the locations of the scene hit by
a beam of the scan are marked with a black circle.
The accuracy of each range estimate is affected by
parameters as varied as distance, environmental tem-
perature and color and pose of the target [2]. In
practice, within a narrow range interval, the error
addi of an estimate can be considered to vary linearly
with the distance di. Thus, the range estimate of an
object located at a distance di is

ri = di f (a di + b)

with

dmaz - dmin

dmaz - dmin
a = and b = dmin - a dmin, (1)

for dmin 5 di 5 dmaz.

Finally, we consider negligible the laser divergence
within the valid range. Thus, the beam is so nar-
row that it cannot hit two different objects located
at different distances which creates erroneous range
estimates formed by a combination of both distances.

3 Algorithm Overview

The goal of the algorithm is to discriminate foliage
from other elements of the scene by classifying each
return of each scan as FOLIAGE or NOTFOLIAGE. Ini-
tially the robot is located in free space, either in a

clear or in the middle of a field of grass. After each
scan is processed, the algorithm produces three out-
puts that describe the results at different levels of
detail. The most detailed output is the array of fi-
nal range estimates, R f , which contains Ne elements,
each one corresponding to one return of the scan, as
shown in Fig. 1. If we are not interested in the classi-
fication of each return then the array R, summarizes
the results that span a given angle or. Hence, R, has
N, elements where

N, = O / a .

Finally, the most general output is the flag alarm
which is set to indicate that there is an object in the
scene that is not foliage.
The pseudo-code of the algorithm is:

ANALYZE-LADAR-SCANS ()
1 Rf(1 : N e) t 0
2 R,(1: N,) t O
3 forever

5
4 [A, R] C-GET-SCAN-DATA ()

[alarm, R,, R f] +CLASSIFY (A, R)

After initializing the arrays Rf and R, we proceed
to process the scans. Line 4 reads the scan into two
arrays of Ne elements, A and R. The element A(i)
is the angle at which the i-th beam was fired while
R(i) is the raw range estimate of the object hit by
the beam. In the rest of this paper we assume that

In the routine CLASSIFY(), we exploit three locality
principles to find NOTFOLIAGE returns. To illustrate
these principles we assume that at time t we found
an obstacle an angle p, e.g., the tree trunk A in Fig.
1. First, the locality in time of the obstacle indicates
that it will be located at around p at time t + T.

Second, we use the locality in space of the obstacle,
Le., an obstacle must have a large size, spaning over
a large angle +. Thus, if a beam hits the obstacle at
angle p then all beams that might hit the obstacles
must lie within /3 f +. Finally, we use the locality in
space of the clear in the foliage that allowed the laser
to hit the partially hidden obstacle, i.e., if a beam at
angle penetrates the foliage, then all its inmediate
neighbors fired at B f A, for A (< $, are likely to
penetrate the foliage through this same clear too.
These locality principles hold for any combination
of motions of the robot and the obstacles, as long
as the sampling interval, 8, and the time between
consecutive scans, T , are sufficiently small.
The pseudecode of the CLASSIFY routine is

we have access to Ne, N,, dmin and dmaz.

CLASSIFY (A, R)
1 [O, nad2O] +FIND-LOW-FREQ (A, R)

2 R, +GET-OBST-CANDIDATES (A, R, 21, nad2v)
3 R, +RELAX-OBST (A, R, R,)
4 Rf +REMOVE-NEW-OBST (A, R,)
5 Rf +REMOVE-THIN-OBST(Rf, w,, 0,)
6 Rf +CROP-RANGE (Rf, amin, dma,)
7 [alarm, R,] +UPDATE-AND-ARCHIVE (A, R,)
8 return(alarm, R,, Rf)

The first three routines determine R,, an array
of returns likely to have hit obstacles. The second
three routines determine Rf , that classifies each
return of the scan. Finally, the routine UPDATE
AND-ARCHIVE saves the results for evalation of
future scans. We now discuss these routines.

4 Candidate selection

The first three routines of CLASSIFY select returns
that are likely to belong to obstacles.

4.1 Finding low-frequency scan regions
The routine FIND-LOW-FREQ uses the estimates R to
find an array R, where it is easy to identify returns
that belong to obstacles. Consider the returns in
Fig. 1. If we plot R, as shown in Fig. 2.a, we notice
that the problem of locating the obstacles amid the
foliage is similar to that of recovering a signal buried
in noise. Thus, continuining with the analogy, the
obstacles can be recovered better if we filter out some
of the foliage returns, increasing the signal-to-noise
ratio of the scan.
To select a filter that removes mostly foliage returns,
consider all the possible returns within an angle a
(Le., the size of our filter) that are centered around
an angle p, as shown in Fig. 1. If the obstacle spans
an angle larger than a, any beam fired at p f a /2
can travel, at most, as far as the obstacle. Thus,
the largest return of the set is likely to belong to
the obstacle if any of the beams hit the obstacle.
Hence, in our case, we can use a maximum-value
filter that will remove mainly foliage returns. The
size of the filter, a, must be larger than the sampling
interval 8 and smaller than the angle spanned by the
smallest object that we want to detect when located
at a distance dmin from the sensor. The result of
applying such filter to nonoverlapping windows of R
is shown in Fig. 2.b. Within each window, a black
dot indicates the maximum return selected by the
filter, a white dot indicates a return filtered out, and
a solid line indicates the value of the resulting filtered
scan v. Since, in this example, a M 2 8 then v has
N, M Ne/2 elements.
The next step is to identify low frequency regions
of the array v that might indicate the presence of
an obstacle using the magnitude of its first or sec-
ond derivatives. In Figs. 2.c-d we show approxima-

d)

d 'v
di'
-

B
' 0

+

d-

1

1 2

-I

3 4

+ +

-

0

5 6 7

f

c

8 9 1

9

+

-4

0

t -I
N

-
3

11 Ns

'i

- i

- i

Figure 2: a) The estimates of the example shown
in Fig. 1, b) the array v of maximum mnge values,
e) its derivative, d) second derivative and e) the ab-
solute value of its second derivative divided by v

tions of these derivatives for the example, found us-
ing forward differences. If the face of the obstacle, as
mapped on the array v, is either constant or follows
a ramp function, then the magnitude of the second
derivative is small. Thus, we are able to identify ob-
jects of any shape and in any pose with respect to the
sensor, as long as their surfaces are locally flat, by
searching for areas of small magnitude in the second
derivative.
The last step of this routine is to generate the array
nad2v which stands for normalized absolute value
of the second derivative of v. The absolute value is
used to allow a magnitudebased thresholding of the
second derivative of v. Furthermore, a normalization
of nad2v by the distance to the object, removes the
bias introduced by the fact that objects located at
different distances have a different associated noise
that affects the measure of their frequency.
The pseudo-code of the FIND-LOW-FREQ routine is

FIND-LOW-FREQ (A, R)
1 v(1: N,) t O
2 forr t 1 to Ne
3
4 if R(r) > v(i)
5 v(i) t R(r)
6
7
8
9 if v(i) = 0
10 nad2v t 0
11 else
12
13 return (v, nad2v)

i e LA(r)/a] + 1

for i t 1 to N, - 1

for i t 1 to N, - 2
dv t v(i + 1) - v(i)

nad2v t Idv(i + 1) - dv(i) l / v(i)

Lines 1-5 filter R and generate v. Lines 6-7
approximate the derivative of v using forward differ-
ences and, finally, lines 8-12 generate the absolute
value of the second derivative of v normalized by v.

4.2 Selecting candidates

The GET-OBST-CANDIDATES routine selects from R
those returns that are most likely to be obstacles
returns. The pseudo-code of this routine is

GET-OBST-CANDIDATES (A, R, v, nad2v)
1
2

4 d o n e t 0
5 whi ledone=O
6 d a n e t l
7
8
9

R,(1 : Ne) t 0
fori t 1 to N,

3 Tk(i) 4- Ki +maZ(Tk-l(i), T k - ~ (i)) / 2

for T t 3 to Ne - 2
i t LA(r)/aj + 1
if v(i) = 0 or R(r) = Rc(r) or R(r) = 0

10
11

12
13
14
15
16
17
18
19

It returns an array of candidates R, which is
zero except a t the locations of returns for which
there is a strong evidence that belong to obstacles.
A small magnitude of nad2v(i) indicates a signal
with low frequency components which might indi-
cate the presence of obstacles. For example, in the
plot of nad2v shown in Fig. 2.e, of the five locations
with a small magnitude, the locations 1 and 10 cor-
respond to obstacles while 4 and 5 correspond to low
frequency areas caused by a lack of signal. Thus, an
obstacle in an area i can be observed if the value of
nad2v(i) is smaller than a threshold Tk(i). In lines
2-3 we set this threshold to the sum of a constant
K1 and a function of the thresholds found for this
location in the two previous scans. We describe the
function that we used in Line 3; other functions that
raise the threshold at locations where threholds were
large in previous scans could also be suitable.
The main part of the routine updates the arrays of
candidates R, and thresholds Tk. A fast-rejection
condition, in line 9, rejects those areas of the scan
with no returns (Le., v(i) = 0), individual locations
with no return (Le., R(r) = 0) and locations that al-
ready contain a candidate (i.e., R(r) = Rc(r)). The
update condition, in line 11, states that a return is
likely to be from an obstacle if it was selected by the
maximum-value filter (i.e., R(r) = v(i)) and, if to-
gether with its four closest neighbors, it spans a low
frequency region (i.e., nad2v is smaller than all the
thresholds within a vecinity of 2) . If the update con-
dition is verified, the array of candidates is updated
with the value of the estimate (i.e., R,(r) = R(r))
and, having detected this position as an obstacle,
all the thresholds of the neighborhood are raised by
some fraction of a value 6. As shown in lines 13-15,
we raise higher the thresholds of locations close to
the identified obstacle than those away from it.

4.3 Reevaluating returns near to candidates

The nonzero locations of R, are very likely to be
obstacles but to achieve this confidence we sacrificed
resolution that we now must recover. At this point,
a value of R, can only be a candidate if it has the

value selected by the maximum-value filter. The
goal of RELAX-OBST is to use the information in R,
about the location of each obstacle to reevaluate the
returns inmedeately adjacent to it. The pseudo-code
of this routine is

RELAX-OBST (A, R, R,)
1 d o n e t 0
2 while done = 0
3 d o n e t 1
4 for r t 3 to Ne - 2
5 i +- lA(r)/aJ
6 c t 1 -k K2 (ck-l(i) + ck-2(i))
7
8

T t C (a R(r) + b)
if Rc(r) = 0 and

U5=-2 [(R,(r + A > 0 and
IR(d - R(r + j> l < TI

9 + R(T)
10 d o n e t 0
11 return(R,)

The main loop updates the array of candidates
R, until there is a complete reevaluation of the
returns of R that does not lead to an update. As
indicated in lines 8-9, a return is updated to be
a candidate if it was not previously a candidate
and if any of its adjacent returns is both already a
candidate and is such that the difference between
the two returns is smaller than a threshold T.
Hence, we are exploiting the spatial locality of
the obstacles to reevaluate a return adjacent to a
return that is known to belong to an obstacle; if
two adjacent returns hit targets located at about
the same distance and if we know that one of the
targets was an obstacle then, it is very likely that
the other return hit the obstacle too.
The key for a succesful updating is the threshold T
which is composed of two elements, as described in
lines 6-7. The first element is the scalar C, larger
than unity, which is some function of the arrays Ck-1
and c k - 2 that contain information about the loca-
tion of obstacles in the previous two scans, i.e., these
arrays keep track of obstacle likelyhood over time in
the same way that the arrays Tk-1 and Tk-2 kept
track of previous thresholdings in the GET-OBST-
CANDIDATES routine. We will describe these arrays
later, when we discuss the routine where they are
updated. The second element of T is our approxima-
tion to the error of the estimate, i.e., a linear function
that increases with range with parameters given by
Eq. 1. Thus, a return adjacent to a candidate re-
turn is updated to be a candidate if the difference
between their ranges lies within the expected error
for that distance; if we have evidence that an ob-
stacle has been sighted before at this location, then

C > 1 relaxing the expected error.
This concludes the selection of returns that are likely
to belong to be returns from an obstacle.

5 Candidate prunning

The second three routines of CLASSIFY return a fi-
nal classification Rf of each return based on prun-
ning the array of candiates R,. The objective of this
prunning is to keep a low false alarm rate.
The first prunning exploits the time and space
locality of the obstacles. The code of this routine is

REMOVE-NEW-OBST (A, Re)
1
2

for r t 3 to Ne - 2
i t LA(r)/cuJ + 1

3
4 Rf (7.1 + 0

6 Rf (r) Rc

if ni.=? 3=r-2 (ck-1 (j) = 0 and c k - 2 (j) = 0)

5 else

7 return(Rf)

Lines 4-7 state that a candidate return R,(r)
must be added as a final obstacle R f (r) only if
an obstacle was located in the neightborhood in
either of the last two scans. An obstacle at a
given location will be identified as a previously seen
obstacle regardless of whether it moves slightly or
is temporarily occluded. Clearly, the obstacle will
be identified as a new obstacle (and not added to
Rf) if its position with respect to the ladar changes
so fast that its new location is outside its previous
neightborhood or if the occlusion lasts so long that
the evidence of having seen it before has expired.
The second prunning routine, REMOVE-THIN-OBST,
removes from the list of final obstacles those which
appear to be isolated hits, i.e, We keep an obstacle
only if there are 0, obstacles within a surrounding
window of fW,/2 returns where W, << Ne. The
code of the routine is arby.

REMOVE-THIN-OBST (Rf, w., 0,)
1 d = LW,/2J
2
3 f o r r t d + l t o N , - d
4 if T[r] > O
5 m t t o
6

8
9 if m t < 0,

11 return(Rf)

T[l : Ne] t Rf[l : Ne]

for k t -d to d
7 i f T [r + k] > o

10 Rf [TI + 0

mt t c a t + 1

The last pruning routine is CROP-RANGE which

crops the array of obstacles Rf to the range for
which our linear approximation to the expected
error of an estimate holds. The routine is

CROP-RANGE (Rf , $,in, d,,,)
1 forr t 1 to Ne
2 if R f (r) > dmaz or R/(T) < dmin
3 Rf (r) t 0
4 return(Rf)

The complexity of each one of these prunning rou-
tines is O(Ne).

6 Saving the state for the next scan

The last routine of CLASSIFY updates the arrays
c k - 1 and Ck--2 which keep track of the obstacles
over time and returns the array R, that summarizes
the position of the obstacles and the flag alarm.
The code of the routine is

UPDATE-AND-ARCHIVE (A, Rc)
1 Ck(1 : N ,) t o
2
3 alarm t 0
4
5
6 if R,(r) > 0

8

10 alarm t 1

12 for i t 1 t o N ,

R,(1 : N,) t 0

forr t 1 to Ne
i t LA(r)/(rJ + 1

7 c k (i) t K3
if R,(i) = 0 or R,(i) < Rc(r)

9 R,(i) + Re(r)

11 c k - 2 t C k - 1

13 if c k (i) > c k - l (i)

14 C k - l (i) t c k (i) + C k - l (i)

15 else

17 if c k - 1 < 0

19 return(alarm, R,)

16 c k - l (i) 6 c k - l (i) - [(c k (i) + c k - l (i)) / 2]

18 c k - 1 6 0

The first loop of the routine, in lines 410, ac-
complishes three things. First, it initializes the
array c k with a value K3 in all the locations
where a candidate was found. We use the array of
candidates R, to initialize c k instead of the array
of final obstacles R, so we can reduce the alarm
rate (generating R f) without losing information
about the previous appearance of the candidates
(contained in Re)- The value of K3 is selected to be
of the order of magnitude of the expected error of
the estimates. Second, in lines 8-9, it sets the value
of R, to the closest non-zero return, i.e., if there is
an obstacle in a given direction i, then R,(i) will
contain the minimum distance between the robot

and the obstacle. This value can be used to modify
a robot trajectory without having to analyze the
individual returns. Finally, the first loop raises the
alarm flag after it finds that there is, indeed, an
obstacle in the scan.
Lines 11-18 update the arrays that have evidence of
the presence of obstacles. Line 11 copies c k - 1 into
c k - 2 . The loop in lines 12-18 update the vector c k - 1

in the following way. If there is a stronger evidence
of the presence of an obstacle than the evidence tha
we had before (i.e., c k (i) > c k (i + 1)) then bias
the evidence in a positive direction; otherwise, bias
the evidence the the negative direction. In our case,
we have bias the evidence in the positive direction
by adding the evidence of c k and C k - 1 . This is a
strong bias that makes the algorithm aware of the
presence of an obstacle very fast. In contrast, we
biased the evidence in the negative direction by sub-
stracting from c k - 1 the average of the evidence of
c k and c k - 1 . This is a weak bias that makes the d-
gorithm forget the presence of an obstacle very slow.
Thus, obstacles that have been seen before, even be-
fore many scans, are rapidly identified when they
reappear. Lines 17-18 make sure that the evidence
is never negative.

7 Experimental results

Although the algorithm has a number of parame-
ters that appear that are loose, in practice, finding
the appropriate values is easy. These type of pa-
rameters appear often in systems that deal with real
world uncertainties and there is no other way to ad-
just them but a trial-an-error approach. To put the
issue in perspective, consider that a control system
based on a PID compensator also requires this type
of adjusting but still, it is the most commonly used
compensator. Likewise, there is no way to determine,
for example, which is the best size of a secondary
cache memory given the size of the primary cache,
the RAM and the hard disk. A given configuration
that excels in a given benchmark will lag in another.
Still, it is very easy to estimate the size of a secondary
cache that is likely to work well under a large number
of computational loads. In summary, the parameters
of the routines that we presented are quite easy to
adjust and once set, the algorithm works well in a
wide variety of scenarios.
The algorithm was designed using the same set of
data in related work by Macedo, Manduchi and
Matthies [5]. The data consists of eight sequences
with a lenght that varies between 15 and 90 seconds.
The platform used to gather the data was the Urbie
robot using and Accuity AccuRange 4000 ladar. This
ladar operates at a wavelength of 1064 nm and has
sampling interval of 8 = 12.2 mradians. Each scan

has Ne = 512 returns and thus, it covers an angle of
SI = 24. The laser is capable of estimating range up
to distances of 50 ft. Still, due to the size and speed
of the robot and we kept our range of interest within
a minimum distance dmin = 0.3 m and a maximum
distance of d,,, = 2 m. Given these parameters,
the laser can hit a 2.5 cm diameter pole 2 times at
a distance of 1 m. We measured the error of the es-
timates for two known targets within this range and
obtained that the coefficients in Eq. 1 are a = 0.015
and b = 12.3. This means that we expect the er-
ror to rise at a rate of lmm evey 70" of range.

set to K I = 0.025 and 6 = 0.03. The free parameter
The free parameters in GET-OBS-CANDIDATES were

in RELAX-OBST W a s Set to K2 = 0.05. Finally, the
free parameter in UPDATE-AND-ARCHIVE W a s Set to
K3 = 25.
Once the parameters of the algorithm were set, they
kept fix for all the scenenarios of the data set. The re-
sults for this set is 4 false alarms in 800 images which
covered scenerios where the robot was in the clear,
in sparse grass and in dense grass, both while stand-
ing still and moving, both with and without rocks
clear and hidden by grass. Figure 3 shows a robot
approaching two rocks. The corresponding graph of
returns, as seen by the laser, is shown in Fig. 4. The
graphs shows an area of 2 x 2/, m2. The front of the
robot is upwards. The laser is located at the origin of
the graph. The solid pie slices originating from it are
robot self-occlusions caused by the on-board camera,
the antennas and other structures. The long lines
originating from the laser indicate returns that were
identified as NOTFOLIAGE. All other returns (i.e.,
the dots of the graphs) were identified as foliage.
In Fig. 5 and 6 we have the corresponding scene and
graph of the robot travelling near a field of very dense
grass. Notice that in front of the robot there is a solid
wall of grass which the algorithm correctly identifies
as foliage. The robot is partially tilted to the right
and the scan hits the ground. The corresponding
returns are also correctly identified as members of
the NOTFOLIAGE class.
The algorithm was ported to Urbie which, by the
time, had a different ladar system. The new ladar
system is a Sick laser with a sampling interval of
6 = 8.7 mradians (Le., 0.5 degrees), covers an angle
of fl = 4 in each scan and has an expected error in
the range of 70 mm at 4 m. The adjustment of the
parameters was easy and the robot perform correcly
at the first try, during the first field test. The algo-
rithm runs in real time and drains minimal resources
from the robot.

Figure 3: Robot facing two rocks at 45' and 315O

Figure 4: Return classification of scene an Fig. 3

8 Conclusion

We have presented a real time algorithm to identify
foliage present in a natural scene. The algorithm
uses the locality of the obstacles in time and space
to first identify a list of returns that were likely to
hit obstacles and then to prune this list to eliminate
false positives. The algorithm was succesfully ported
to the Urbie robot. Our future plans are to extend
this algorithm to handle range images.

Acknowledgments
The collection of the data set, the development of
the algorithm and its implementation in the Urbie
robot were sponsored by the DARPA MARS pro-
gram under contract ******* and the DARPA TMR
program under contract ********.

References
[l] C. Thorpe, M. Hebert, T. Kanade, and S. Shafer, "Vi-

sion and navigation for the carnegie-mellon navlab,"

Figure 5: Robot with field of grass on the left

Figure 6: Return classification of scene an Fag. 5

IEEE %ns. Pattern Anal. Machine Intell., vol. 10,
pp. 362-373, May 1988.

[2] M. Adams, “Lidar design, use, and calibration con-
cepts for correct environmental detection,” IEEE
l h n s . Robotics Automat., vol. 16, pp. 753-761, Dec.
2000.

[3] M. Hebert and E. Krotkov, “3d measurements from
imaging laser radars: how good are they?,” Intl. Jour-
nal Image and Vision Computing, vol. 10, pp. 170-178,
Apr. 1992.

[4] I. S. Kweon, R. Hoffman, and E. Krotkov, “EX-
perimentd characterization of the perceptron laser
rangefinder,” Tech. Rep. CMU-RI-TR-91-01, Robotics
Institute, Carnegie Mellon University, Pittsburgh, PA,
Jan. 1991.

[5] J. Macedo, R. Manduchi, and L. Matthies, “Ladar-
based discrimination of grass from obstacles for au-
tonomous navigation,” in Pmc. Intl. Symposium on
Ezperimental Robotics, pp. 111-120, 2000.

